Thanks to Toyota’s hybrid technology, drivers have since 1997 benefited from increased fuel efficiency, lower operating costs, and unparalleled levels of comfort and refinement. Today, Toyota offers a wide variety of hybrid vehicles, including compact hybrids like the Yaris Hybrid, family-sized vehicles like the Prius, Corolla, and Toyota C-HR, and even estate vehicles like the Corolla Hybrid Touring Sports. Have you ever wondered how a hybrid automobile operates, though?
Learn more about Toyota’s hybrid drive system in the following paragraphs, including what it is, how it operates, and how it helps the environment and your wallet.
In This Article...
What is a hybrid?
In plain English, a “hybrid” car is one that uses two or more power sources. The majority of hybrid road vehicles combine an electric motor with a conventional internal combustion engine, however there are other distinct hybrid configurations.
Using a battery-powered electric motor and a gasoline-powered combustion engine that may operate together to drive the car or separately, Toyota invented the full hybrid powertrain, which debuted with the original Prius. Since the Prius was introduced in Japan in August 1997, it has become the most well-known hybrid system in the world, selling more than 15 million units.
Parallel hybrids are the second variety. A typical combustion engine serves as the vehicle’s primary source of propulsion, with an electric motor installed between the engine and gearbox to help. Fitting an electric motor into a relatively compact space also reduces the power and EV (electric vehicle) range of this setup, making it less flexible than a full hybrid.
The series type is the third hybrid variant. All of the drive in this kind of vehicle is provided by an electric motor. The typical combustion engine serves as a generator to power the electric motor instead of being attached to the transmission. The key challenge for a series hybrid is continuing to operate efficiently after the battery has been depleted. Series hybrids are few as a result.
Toyota hybridhow does the system work?
Toyota’s hybrid drive system is made up of six main parts: a gasoline engine, an electric motor, a generator, a power control unit, and a power split device that splits the power from the engine, motor, and generator using a specific kind of gearbox.
It is a sophisticated fuel-saving technology that can smoothly transition between conventional engine power and electric power. Our hybrid technology automatically manages the power coming from both sources and instructs the car how to combine them for maximum efficiency and performance. It is capable of responding to various driving circumstances.
True synergy between the two power sources is delivered by the system. When the engine is operating, the generator charges the battery. When driving conditions permit it, such as in slow traffic, the generator can turn off the petrol engine and switch to an electric motor for zero-emissions transportation. The advanced engine management system can detect when the car is stopped and will automatically switch the engine back on when necessary after shutting it off to save energy and reduce pollution.
Because the technology maintains a good charge in the battery, a hybrid Toyota won’t require a mains supply to recharge.
However, Toyota also makes cars that turn hydrogen into electricity and plug-in hybrid electric vehicles for those who need the higher range of more than 30 miles in electric-only EV mode. Click here to learn more about the various hybrid and electric vehicle models.
How are the batteries charged?
The battery is charged twice by the Toyota hybrid system. First, and as was already said, the generator that charges the battery is powered by the gasoline engine. Regenerative braking, a system that makes good use of braking energy, is the second technique.
The technology sends energy back to the battery, where it is essentially recycled, each time you press the brake or release the accelerator. The energy from the brakes isn’t wasted as heat or noise; instead, it’s captured and used later to power the electric motor. This increases the overall efficiency of the vehicle and is especially effective in stop-start traffic where the system recovers and stores a lot of energy.
The on-board battery of a PHEV, such as the Prius Plug-in, may also be charged at home using the mains supply or at designated charging stations along your route, giving you a higher EV range of up to 30 miles.
How long do hybrid batteries last?
Toyota’s normal battery guarantee is five years or 100,000 miles, and it may be extended up to 15 years with no cap on total mileage because the batteries in its hybrid vehicles are reliable, corrosion-resistant devices built to last. more information can be found here.
The batteries are large units that need to store enough voltage to run the car without the help of the gasoline engine. Although there is a minor, additional environmental cost associated with their creation, driving a hybrid car has a much greater positive influence on the environment. In fact, we debunked that hybrid myth in this piece along with a few others.
Toyota is also eager to recycle the hybrid car batteries because they may be refurbished into new batteries or used for other stationary energy storage systems.
Through your local Toyota dealer, this can be accomplished. We presently recover more than 90% of the hybrid batteries from our cars, and we want to reach 100%.
Is the engine different to that of a normal car?
Simply said, absolutely. In comparison to the typical Otto-type four-stroke cycle, the internal combustion engine found in a Toyota hybrid operates on a slightly different engine cycle. This modified four-stroke cycle, known as the Atkinson cycle, is more effective since it generates less heat.
It overcomes a problem experienced by engines with typical cycles: infusing more fuel than necessary to lower combustion temperatures and prevent the catalytic converters from overheating. Instead, it cools the internal combustion chamber using recirculated exhaust gases. The conventional treatment is effective but consumes more fuel. Toyota’s solution, however, is more reliable and more fuel-efficient.
You may read a more thorough examination of Toyota’s utilization of the Atkinson cycle here.
Do I have to drive differently to make the most of hybrid technology?
In no way. Toyota has fully automated the hybrid system to maximize efficiency and reduce fuel consumption for every driver. You may unwind and savor the journey!
Tim Dickson, a motoring journalist, drives a Corolla Hybrid in this article to learn more about the experience of operating a Toyota hybrid.
At this link, you can get further general advice, many of which are applicable to maximizing the fuel efficiency of both hybrid and non-hybrid vehicles.
How does a hybrid system from Toyota operate?
The car’s electric drive motor is its only source of power when it is beginning, halted at stop signs and intersections, or driving slowly. It obtains its electricity from the hybrid battery by way of the power control unit. In addition to saving on gasoline and producing no emissions, the electric drive motor aids in acceleration by instantaneously delivering the maximum torque. Think of it as a win-win scenario.
The engine and electric drive motor work together to produce power for smooth and forceful acceleration when the car has to accelerate quickly, such as when trying to pass another vehicle on the highway. The hybrid battery contributes by supplying the additional energy required to boost the drive power. When you need it most, the Electronically Controlled Continuously Variable Transmission (ECVT) and the mix of direct mechanical power from the engine and electric power from the motor give quick acceleration.
The gasoline engine and electric motor both provide power to the wheels when cruising and under typical driving circumstances. At faster speeds, the electric drive motor takes over as necessary, but at slower speeds, it works the other way around. With the help of the planetary gear, engine power is split between the wheels and the generator for maximum efficiency. In addition to powering the electric motor, the generator also aids in recharging the hybrid battery. It all functions flawlessly in concert to provide outstanding outcomes, which is why it is dubbed a hybrid synergy drive system.
Most cars lose energy when they brake because of heat and friction. But with a Toyota hybrid vehicle, using the accelerator or using the brakes actually aids in battery recharging and increases system effectiveness. Regenerative braking allows for the conversion of kinetic energy from the wheels into electricity, which is then transmitted by the electric motor to the power control unit and stored in the hybrid battery. In other words, the car’s wheels act as a generator, powering the electric motor. Particularly useful in stop-and-go urban driving, this system. The idea of reusable energy is a novel one.
Under normal conditions, just the electric drive motor will be working when you put a hybrid automobile into reverse. This is due to the power control unit turning off the gasoline engine when it is not required, such as when coasting or traveling at a low pace. In fact, the gasoline engine will only start while the vehicle is moving in reverse to charge the hybrid battery.